PAM2846 EV Board User Guide AE Department

1. Revision Information

Date	Revision	Description	Comment
$2008 / 3 / 26$		V2.0	Initial Release

2. EV Board Schematic

PAM
PAM2846 EVB User Guide

3. EVB PAM2846 EB7BDA Description

PAM2846 EVB7BDA is an evaluation board for the PAM2846, a six strings LED current sink.
The board is targeted to be used in providing a simple and convenient evaluation environment for the PAM2846. Analog dimming, PWM dimming, single wire dimming, current matching and efficiency etc, on the board make it easy to be evaluated.

Use single power supply ($8 \mathrm{~V}-24 \mathrm{~V}$), LED: $6-12$ serials*6 parallel, the output voltage is auto-adaptive to LED numbers.
PAM2846 EVB7BDA is working in boost and sink mode, so make sure the power supply voltage not exceed the LED voltage too much.

4. EV Board View

EV Board Operational Sequence:

(1) Potentiometer for LED Dimming.
a) Connect ENA to high (Vin, left side).
b) Connect PWMD to high (right side).
c) Setting operating frequency. Connect FSEL to high (left side), $f=1.6 \mathrm{MHz}$; connect FSEL to low (right side), $\mathrm{f}=500 \mathrm{kHz}$; FSEL NC (no connect), $\mathrm{f}=800 \mathrm{kHz}$.
d) Connect Vout to anode of all the six String's LED, their cathode connect to LED1, LED2, LED3, LED4, LED5, LED6 separately.
e) Connect Vin to power supply. Vin=8V-24V.
f) Adjust R11's value to adjust the LED's brightness.

РAM

(2) PWM Signal Dimming Dunction.

a) Connect ENA to high (Vin, left side).
b) Connect PWMD to an external PWM signal (the center pin).
c) Setting operating frequency. Connect FSEL to high (left side), f=1.6MHz; connect FSEL to low (right side), $f=500 \mathrm{kHz}$; FSEL NC (no connect); $\mathrm{f}=800 \mathrm{kHz}$.
d) Connect Vout to anode of all the six String's LED, their cathode connect to LED1, LED2, LED3, LED4, LED5, LED6 separately.
e) Connect Vin to power supply. Vin=8V-24V.
f) Adjust external PWM signal duty cycle to adjust the LED's brightness.

(3) Single Wire Dimming Function.

a) Connect ENA to external PWM signal (the center pin).
b) Connect PWMD to high (right side).
c) Setting operating frequency. Connect FSEL to high (left side), $\mathrm{f}=1.6 \mathrm{MHz}$; connect FSEL to low (right side), $\mathrm{f}=500 \mathrm{kHz}$; FSEL NC (no connect); $\mathrm{f}=800 \mathrm{kHz}$.
d) Connect Vout to anode of all the six String's LED, their cathode connect to LED1, LED2, LED3, LED4, LED5, LED6 separately.
e) Connect Vin to power supply. Vin=8V-24V.
f) Adjust external PWM signal to adjust the LED's brightness (see Figure-1).

Figure 1 ENA Timing Diagram

2AM

PAM2846 EVB User Guide

5. EV Board BOM List

Item	Value	Type	Rating	Description	Vender and Part No.
C1, C5	$10 \mu \mathrm{~F}$	X5R/X7R, Ceramic/1210	50 V	Input coupling CAP Output CAP	Torch UDK325BJ106MM-T
C6	$1.0 \mu \mathrm{~F}$	X5R/X7R, Ceramic/0805	25 V	Vin coupling CAP	Murata GRM21BR71E105K
C2,C 3	$1.0 \mu \mathrm{~F}$	X5R/X7R, Ceramic/0805	25 V	VDD_dr and VDD_5V coupling CAP	Murata GRM21BR71E105K
C4	100 nF	X5R/X7R, Ceramic/0805	50 V	comp CAP	Murata GRM219C0G1H104K
L1	$22 \mu \mathrm{H}$	1210	2 A	Inductor	Sumida CDRH5D16-22R
D1		Nihon EC31QS06	$3 \mathrm{~A} / 60 \mathrm{~V}$	Schottky Diode	Nihon EC31QS06
R1	10 k	0603	1%	Iset Resistor	
R11	200 k	potentiometer		Iset Resistor	
R2	1 Meg	0805	1%	Feedback Resistor	
R3	30.9 K	0603	1%	Feedback Resistor	
R10	0Ω	0603	5%	Comp Resistor	
White LED	3.2 V (typ) 3.5V(max) at 20 mA				

This BOM is for 12 series * 6 parallel LED output. To optimize different numbers LED applications please see Append 1 and 2.

6. External Components Selection

Input Capacitors (C1) and Output Capacitors (C5)

(1) C1 Low ESR needed, 10 F F, X5R/X7R ceramic recommended.
(2) C5 Low ESR needed, 10 1 F, X5R/X7R (rating 50V) ceramic recommended.

Coupling Capacitors (C2, C3, C6)

(1) $1 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R} / \mathrm{X} 7 \mathrm{R}$ ceramic recommended.

Iset Resistors (R1, R11)

(1) R set all the string's LED current, lled=228*Viset/R, $R=R 1+R 11$.
(2) R1, 10K $\pm 1 \%$ recommend; R11, adjustable, 0-200k.

Feedback Resistors (R2, R3)
(1) Vout $=V_{F B}{ }^{*} R 3 /(R 3+R 2)$.
(2) R2, 1 Meg $\pm 1 \%$ recommend.
(3) Vout_limit is set in 40 V , so R 3 is 30.9 K minimum.

Comp Resistor (R10) and Comp Capacitor (C4)

(1) R10, shorted.
(2) $\mathrm{C} 4,100 \mathrm{nF}, \mathrm{X} 5 \mathrm{R} / \mathrm{X} 7 \mathrm{R}$ ceramic recommended.

Inductor (L1)

(1) Low DCR needed, $22 \mu \mathrm{H}$ (rating 2A) recommended

Schottky Diode (D1)
(1) Nihon EC31QS06(3A, 60V) recommended.
(2) B360A $(3 \mathrm{~A}, 60 \mathrm{~V})$ recommended.

PAM

PAM2846 EVB User Guide

7. PCB Layout Guidelines

Decoupling Capacitors

(1) The capacitors (C6, C2, C3) need to place very close to the PAM2846's pins. The capacitor C1 need place close to the power supply.

Grounding

(1) The decupling capacitors C2, C3, C4, C6 and R1, R3 should each to be grounded to analog ground (AGND).
(2) The capacitors C1, C5 should each be grounded to power ground (PGND).
(3) Connect the AGND and PGND islands by connecting the GND pins directly to the exposed backside pad. Make no other connections between these separate ground planes.

Others

(1) Connect L1, SW, D1, C5 with short and wide connections.
(2) Place the Output voltage setting-divider resistors (R2, R3) as close to the OV pin as possible. The divider's center trace should be kept short.
(3) Minimize the size of the SW node while keeping it wide and short. Keep the SW node away from the feedback node and ground.
(4) Place the Iset resistors (R1, R11) as close to the Iset pin as possible.

8. PCB Layout Example

PAM

9. Append 1, External Component Selection table:

Circuit	Figure 3	Figure 2	Figure 2	Figure 2	Figure 3
Switching Frequency	1.6 MHz	500 KHz	500 KHz	500 KHz	800 KHz
White LED	$\begin{gathered} 3.2 \mathrm{~V} \text { (typ), } 3.5 \mathrm{~V}(\mathrm{max}) \\ \text { at } 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 3.2 \mathrm{~V} \text { (typ), } 3.5 \mathrm{~V}(\max) \\ \text { at } 20 \mathrm{~mA} \end{gathered}$		$\begin{gathered} 3.2 \mathrm{~V}(\text { typ }), 3.5 \mathrm{~V}(\text { max }) \\ \text { at } 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 3.2 \mathrm{~V} \text { (typ), } 3.5 \mathrm{~V}(\max) \\ \text { at } 20 \mathrm{~mA} \end{gathered}$
Number White LEDs	6 series* 6 parallel $25 \mathrm{~mA}(\mathrm{max})$	$\begin{gathered} 8 \text { series* } 6 \text { parallel } \\ 25 \mathrm{~mA}(\max) \end{gathered}$	$\begin{gathered} 10 \text { series*6 parallel } \\ 25 \mathrm{~mA}(\mathrm{max}) \end{gathered}$	$\begin{gathered} 12 \text { series*}^{*} 6 \text { parallel } \\ 25 \mathrm{~mA}(\mathrm{max}) \end{gathered}$	6 series* 6 parallel $25 \mathrm{~mA}(\max)$
	4.8 V to 6 V, Vdd_dr $=\mathrm{Vdd} 5 \mathrm{~V}=\mathrm{Vin}$ or $5 \mathrm{~V}(\mathrm{Vdd})$	4.8 V to 24 V	8 V to 28 V	8 V to 28 V	$\begin{gathered} 4.8 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ \text { Vdd_dr=Vdd_5V }=5 \mathrm{~V} \\ (\mathrm{Vdd}) \end{gathered}$
Inductor L1	2.2uH, 2.5A power inductor Sumida CDRH5D16-2R2	$\begin{aligned} & \text { inductor Sumida } \\ & \text { CDRH5D16-220 } \end{aligned}$	inductor Sumida CDRH5D16-220	inductor Sumida CDRH5D16-220	4.7uH, 2.5A power inductor Sumida CDRH5D16-4R7
Input Capacitor	$10 \mathrm{uF} \pm 10 \%$, 10V X5R Ceramic capacitor (1206) Murata GRM31MR61A106K	$\begin{gathered} \hline 10 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V} \times 7 \mathrm{R} \\ \text { ceramic } \\ \text { capacitor(1210) } \\ \text { Torch } \\ \text { UDK325BJ106MM-T } \\ \hline \end{gathered}$	$\begin{gathered} \text { 10uF } \pm 20 \%, 50 \mathrm{~V} \text { X7R } \\ \text { ceramic } \\ \text { capacitor(1210) } \\ \text { Torch } \\ \text { UDK325BJ106MM-T } \end{gathered}$	$\begin{gathered} 10 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V} \text { X7R } \\ \text { ceramic } \\ \text { capacitor(1210) } \\ \text { Torch } \\ \text { UDK325BJ106MM-T } \\ \hline \end{gathered}$	$10 u F \pm 10 \%$, 10V X5R Ceramic capacitor (1206) Murata GRM31MR61A106K
Output Capacitor	$\begin{gathered} \text { 10uF } \pm 20 \%, 50 \mathrm{~V} \text { XR } \\ \text { ceramic } \\ \text { capacitor(1210) } \\ \text { UDK325BJ106MM-T } \\ \hline \end{gathered}$	```10uF\pm20%,50V X7R ceramic capacitor(1210) UDK325BJ106MM-T```	```10uF\pm20%,50V X7R ceramic capacitor(1210) UDK325BJ106MM-T```	$\begin{gathered} 10 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V} 7 \mathrm{R} \\ \text { ceramic } \\ \text { capacitor(1210) } \\ \text { UDK325BJ106MM-T } \end{gathered}$	```10uF }\pm20%,50V X7R ceramic capacitor(1210) UDK325BJ106MM-T```
Diode Rectifier	2A, 30V Schottky diode Nihon EC21QS03L	2A, 40V Schottky diode Nihon EC21QS04L	3A, 40V Schottky diode Nihon EC31QS04L	3A, 60V Schottky diode Nihon EC31QS06L	3A, 30V Schottky diode Nihon EC31QS03L
Feedback Resistors	$\begin{gathered} 1 \mathrm{M} \pm 1 \%, 0603 \\ 60 \mathrm{~K} \pm 1 \%, 0603 \end{gathered}$	$\begin{aligned} & 1 \mathrm{M} \pm 1 \%, 0603 \\ & 45 \mathrm{~K} \pm 1 \%, 0603 \end{aligned}$	$\begin{array}{r} 1 \mathrm{M} \pm 1 \%, 0603 \\ 36 \mathrm{~K} \pm 1 \%, 0603 \end{array}$	$\begin{gathered} 1 \mathrm{M} \pm 1 \%, 0603 \\ 30.9 \mathrm{~K} \pm 1 \%, 0603 \end{gathered}$	$\begin{aligned} & 1 \mathrm{M} \pm 1 \%, 0603 \\ & 60 \mathrm{~K} \pm 1 \%, 0603 \end{aligned}$
Comp capacitor	$100 \mathrm{nF} \pm 10 \%, 50 \mathrm{~V}$ X7R Ceramic capacitor Murata GRM188R71H104K	$100 \mathrm{nF} \pm 10 \%, 50 \mathrm{~V}$ X7R Ceramic capacitor Murata GRM188R71H104K		$100 \mathrm{nF} \pm 10 \%, 50 \mathrm{~V}$ X7R Ceramic capacitor Murata GRM188R71H104K	

РAM

Append 2, Application Circuit:

Figure 2

Figure 3

